In a similar fashion, 1 was allowed to react to yield 9 (53%), mp 41-44°.

When the dried phosphonium salt 8 was heated in chloroform at 60° for 45 hr, no chloride 9 resulted.

B. With 2-d.-A solution of 2-d (1.14 g, 0.01 mol) and triphenylphosphine (2.88 g, 0.011 mol) in 6 ml of carbon tetrachloride was stirred in a dry atmosphere at 60-65° for 3.5 hr. The solvent was removed at 1 mm. By vpc analysis (column C, 100°), the distillate collected by slowly heating the residue to 180° (1 mm) contained a 13.3:86 ratio of 10-d to anti-9-d. Pure samples of anti-9-d and 10-d were collected by vpc (column C, 65°).

Similar reactions of 2 were conducted. Ratios of 10 to 9 varied from 3:97 for residue pyrolyzed at 160° (30 min) to 1.18: for pyrolysis at 60° (6 hr in carbon tetrachloride). The maximum yield for purified 9 and 10 in any run was 19% (30% crude).

Isomerization Experiment of 10 and 9.-A solution of 0.1 g of 9 and 10, 0.1 g of triphenylphosphine, and 0.1 g of triphenylphosphine oxide in 0.2 ml of chloroform was heated to 150° during 5 min. The ratios of 10 to 9 measured by vpc (column C, 100°) before and after heating were 1.0:3.0 and 1.0:3.1, respectively.

Kinetically Followed Decomposition of 8 .- Crude 8 was prepared by stirring a solution of 1 (0.85 g, 7.6 mmol) and triphenylphosphine (2.15 g, 8.2 mmol) in 7 ml of carbon tetrachloride at 65° for 3.5 hr. Solvent was removed in vacuo and the residue

was twice shaken up in chloroform and precipitated with anhydrous ether. After being dried in vacuo over phosphorus pentoxide, 8 was dissolved in deuteriochloroform (1% TMS) and sealed in two nmr tubes. The tubes were heated at $120 \pm 3^{\circ}$ and the decomposition of 8 and appearance of 9 were monitored periodically by recording the nmr spectrum and integrating the signals of the 7 proton of 8 (4.82 ppm) and of 9 (3.94 ppm). Experimental plots of log [8] vs. time and log $([9]_{\infty} - [9])$ vs. time were constructed. Both gave roughly straight-line slopes: for decomposition of 8, $k \simeq 7.7 \times 10^{-6} \text{ sec}^{-1}$; for formation of 9, $k \cong 8.2 \times 10^{-6} \operatorname{sec}^{-1}.$

Registry No.—Triphenylphosphine, 603-35-0; carbon tetrachloride, 56-23-5; anti-1-d, 23667-07-4; **2-***d*, 23667-08-5; **9**, 765-80-0; anti-9-d, 23667-10-9; syn-9-d, 23754-34-9; 13, 13118-70-2.

Acknowledgment.—This work was made possible through support from the National Science Foundation and Petroleum Research Fund. Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for their support.

Vinylogous Imides. II. Ultraviolet Spectra and the Application of Woodward's Rules^{1,2}

DARYL L. OSTERCAMP³

Department of Chemistry, Concordia College, Moorehead, Minnesota 56560

Received July 7, 1969

The ultraviolet spectra of a variety of β -amino $\alpha_{\beta}\beta$ -unsaturated carbonyl compounds and their N-alkyl and Nacyl derivatives were examined with due regard for chromophore stereochemistry. Included in this study were 37 vinylogous amides, -NC=CC(O)-; 26 vinylogous imides, -(O)CNC=CC(O)-; 13 vinylogous urethans, -NC=CCOOR; and 2 vinylogous ureas, -NC=CC(O)N-. Analysis of the relative locations of the $\pi \to \pi^*$ transitions gave substituent increments of +75 mµ for *cis-β*-amino, +65 mµ for *trans-β*-amino, +10 mµ for β-Nalkyl, $-10 \text{ m}\mu$ for β -N-acetyl, and $+6 \text{ m}\mu$ for β -N-benzoyl. These substituent constants can be used to distinguish between cis- and trans-vinylogous imides, and also to reinforce stereochemical assignments for vinylogous amides and urethans based upon their molar extinction coefficients.

Empirical rules for correlating the structure of an α,β -unsaturated ketone with the ultraviolet (uv) absorption maximum of its $\pi \rightarrow \pi^*$ transition were first enunciated by Woodward⁴ in 1941. Subsequently these rules were expanded to include the corresponding aldehydes,⁵ acids, and esters,⁶ and the effect of ring size on band positions for α,β -unsaturated carbonyl compounds in general.⁷ Considerable study has also been devoted to the bathochromic effects of various substituents. In 1959 Fieser and Fieser⁸ modified slightly the solvent corrections initially applied by Woodward.⁴ As spectral information accumulated, the results, including substituent shifts, have been published^{8,9} periodically in tabular form to facilitate their application.

Part I: D. L. Ostercamp, J. Org. Chem., 30, 1169 (1965).
 Presented in part at the 3rd Great Lakes Regional Meeting of the

American Chemical Society, DeKalb, Ill., June 1969. (3) Address for the 1969-1970 academic year: School of Chemical Sciences, University of East Anglia, Norwich, England.

(4) R. B. Woodward, J. Amer. Chem. Soc., 63, 1123 (1941).

(5) L. K. Evans and A. E. Gilliam, J. Chem. Soc., 565 (1943).

(6) A. T. Nielsen, J. Org. Chem., 22, 1539 (1957).
(7) W. M. Schubert and W. A. Sweeney, J. Amer. Chem. Soc., 77, 2297 (1955).

(8) L. F. Fieser and M. Fieser, "Steroids," Reinhold Publishing Corp., New York, N. Y., 1959, pp 15-21.

 (9) (a) L. F. Fieser and M. Fieser, "Natural Products Related to Phenanthrene," 3rd ed. Reinhold Publishing Corp., New York, N. Y., 1949, pp 184-198; (b) A. I. Scott, "Interpretation of the Ultraviolet Spectra of

The availability of vinylogous amides, β -amino α,β unsaturated ketones, -NC=CC(O)-, and imides, β amido α,β -unsaturated ketones, -(0)CN=CC(0)-, of known structure and stereochemistry from a previous project¹ prompted us to investigate their uv spectral properties. Although a substituent increment of +95 m μ for a β -dialkylamino group (-NR₂) of a vinylogous amide was reported¹⁰ in 1946, the compounds included in this study were limited in both number and scope. In addition the relationship of stereochemistry to substituent shift has not been thoroughly investigated for this system. Planar structures I-IV¹¹ allow maximum resonance stabilization. In the case of form II intramolecular hydrogen bonding of -NH to carbonyl oxygen is also possible.

Examination of the literature revealed the existence of spectral data for related compounds such as vinylo-

(1946).

(11) Stereochemical labels throughout this paper refer to the chromophoric system and not to any specific compound.

Natural Products," The Macmillan Co., New York, N. Y., 1964, p 58; (c) H. H. Jaffe and M. Orchin, "Theory and Applications of Ultraviolet Spec-H. H. Jane and M. Oronin, "Theory and Applications of Ottaviolet Spectroscopy," John Wiley & Sons, Inc., New York, N. Y., 1962, Chapter 10;
(d) J. R. Dyer, "Applications of Absorption Spectroscopy of Organic Compounds," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1965, pp 11-15;
(e) D. J. Pasto and C. R. Johnson, "Organic Structure Determination," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969, p 96.
(10) K. Bowden, E. A. Braude, and E. R. H. Jones, J. Chem. Soc., 948

gous urethans, -NC=CCOOR, 10, 12-18 N-acyl derivatives,¹⁶ and vinylogous ureas, -NC=CC(O)N-,^{15,19} and the results are included in the present paper.

Experimental Section²⁰

Materials .- Acetyl chloride, benzoyl chloride, and pyridine were all freshly distilled (pyridine from BaO) under a dry atmosphere prior to use. Analytical reagent grade acetic anhydride was used without further purification.

Spectra .--- Ultraviolet spectra were measured using a Cary Model 14 recording spectrophotometer (Spectrograde solvents) with cells of 1.00-cm path length. The wavelengths were good to $\pm 1 \,\mathrm{m}\mu$, the extinction to $\pm 2\%$. Nmr data were obtained on a Varian A-60 spectrometer with tetramethylsilane as the internal reference.

Preparation of Compounds .- The existence of suitable ultraviolet absorption data in the literature obviated the synthesis of many compounds. In addition, the preparation or source of a number of compounds utilized in the present work has been described previously by the author.¹ Samples of 4-methylamino-3-penten-2-one (18)²¹ and 4-benzylamino-3-penten-2-one (19)²² were readily obtained from the appropriate amine and 2,4-pentanedione.

1-Acetyl-2-aminocyclohexene (1).—A solution of 14.4 g (0.103 mol) of freshly distilled 2-acetylcyclohexanone, bp 104-106° (16 mm), in 100 ml of absolute methanol was saturated for 2.5 hr with ammonia. Development of a light yellow color was accompanied by slight warming of the solution as the reaction proceeded. After standing at room temperature for 2 hr, the solution was saturated for 2.5 hr again with ammonia. A third and a fourth treatment with ammonia (2 hr each time) on succeeding days resulted in complete conversion into 1 and 5 (tlc).²⁰ Subsequent removal of solvent gave a slightly wet, yellow solid, which was then dissolved in CH_2Cl_2 . After the organic solution had been washed with 100 ml of 5% NaOH and then water, it was dried (Na₂SO₄) and freed of solvent. The resulting yellow mixture of crystalline 1 and 5 (12.2 g, 85.1%), mp 63-93°, was recrystallized once from cyclohexane and then twice from methanolwater to yield 5.57 g (38.9%) of white 1, mp 99-104°. Removal of solvent from each mother liquor and subsequent chromatography of the individual solid residues gave an additional 2.34 g

(15) P. M. Quan and L. D. Quin, ibid., 31, 2487 (1966).

(18) R. Huisgen, K. Herbig, A. Siegl, and H. Huber, Chem. Ber., 99, 2526 (1966).

(19) E. Wenkert, K. G. Dave, F. Haglid, R. G. Lewis, T. Oishi, R. V. Stevens, and M. Teroshima, J. Org. Chem., 33, 747 (1968).

(20) Melting points and boiling points are uncorrected. Reaction progress and product purity were monitored by thin layer chromatography (Eastman chromogram sheet type K301R silica gel with fluorescent in-dicator) in the appropriate solvent or solvent pair. All spots on chromatograms were detected by uv light. Preparative chromatography was carried out on columns dry packed with Florisil. Solvents were evaporated under reduced pressure on a rotary evaporator with a bath of suitable temperature. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, N. Y. (21) H. F. Holtzclaw, Jr., J. P. Collman, and R. M. Alire, J. Amer. Chem.

Soc., 80, 1100 (1958).

(22) L. Rugheimer and G. Ritter, Chem. Ber., 45, 1332 (1912).

(16.3%) of 1 (eluted first with ether), mp 103-104°, and 1.40 g (9.8%) of 5 (eluted with ethyl acetate), mp 112-114°.

Material isolated by chromatography was recrystallized twice from cyclohexane and then vacuum sublimed at 95° (1 mm) to afford an analytically pure sample of 1: mp $104.5-105.4^{\circ}$; nmr (CDDl₃) δ 7.3 (br s, 2, NH₂), 2.38 (m, 4, 2 CH₂C=C), 2.07 (8, 3, CH₃CO), and 1.62 ppm (m, 4). Anal. Calcd for C₈H₁₃NO: C, 69.03; H, 9.41; N, 10.06.

Found: C, 69.13; H, 9.49; N, 10.27.

2-(1-Aminoethylidene)cyclohexanone (5).—This compound was a coproduct with 1. Two recrystallizations from cyclohexane followed by vacuum sublimation at 108° (0.5 mm) gave pure 5, mp 112.8–113.5°

Anal. Caled for C₈H₁₃NO: C, 69.03; H, 9.41; N, 10.06. Found: C, 69.11; H, 9.54; N, 10.27.

2-(1-Acetylaminoethylidene)cyclohexanone (6).—A suspension of 1.00 g (0.00718 mol) of 5 and 5.0 ml of acetic anhydride was heated to reflux under a dry atmosphere, with formation of a yellow color accompanying solution of starting material. After refluxing for 5 min, the solution was allowed to stand overnight. Alcoholysis of excess anhydride by adding 20 ml of methanol and refluxing the resulting solution for 15 min was followed by removal of solvent to give a light yellow, semicrystalline oil. Chromatography (ether) of the crude material yielded 1.10 g (84.5%) of a viscous, colorless oil which crystallized completely in the refrigerator. Two recrystallizations of the product from hexane

in a cold room afforded an analytical sample of 6, mp $35-36^{\circ}$. Anal. Caled for C₁₀H₁₈NO₂: C, 66.27; H, 8.34; N, 7.73. Found: C, 66.20; H, 8.56; N, 7.88.

2-(1-Benzoylaminoethylidene)cyclohexanone (7).-A solution of 1.00 g (0.00719 mol) of benzoyl chloride in 15 ml of dry ether was added dropwise under a dry atmosphere to a stirred suspension of 1.00 g (0.0718 mol) of 5 in 25 ml of dry ether and 0.790 g (0.0100 mol)mol) of pyridine. The expected precipitate of pyridine hydrochloride appeared almost immediately. After stirring overnight, the reaction mixture was transferred to a separatory funnel and washed with two 25-ml portions of 5% HCl, one 25-ml portion of 5% NaHCO3, and finally with water. The organic layer was separated, dried (Na_2SO_4) , and freed of solvent to yield 1.60 g of light yellow crystals. After chromatography (ether) of the crude product and subsequent recrystallization from hexane, there remained 1.46 g (83.5%) of white, crystalline product. Vacuum sublimation at 64° (0.5 mm) for 4 days yielded pure 7, mp 66.0-66.5°

Calcd for $C_{15}H_{17}NO_2$: C, 74.04; H, 7.04; N, 5.76. Anal. Found: C, 73.79; H, 7.00; N, 5.86.

The syntheses of 2 and 3 essentially paralleled that of 7, except that larger amounts of reagents were used.

1-Acetyl-2-acetylaminocyclohexene (2).—From 6.00 g (0.0432)mol) of 1 and 3.38 g (0.0432 mol) of acetyl chloride there resulted 5.90 g of light yellow, liquid product. Fractional distillation of this material under reduced pressure gave 4.55 g (58.3%) of 2, bp 116-118° (0.9 mm). A second distillation afforded an ana-

lytical sample of 2, bp 119–121° (1.2 mm). Anal. Calcd for $C_{10}H_{15}NO_2$: C, 66.27; H, 8.34; N, 7.73. Found: C, 65.99; H, 8.19; N, 7.49.

(**3**).—From 1-Acetyl-2-benzoylaminocyclohexene 4.00(0.0287 mol) of 1 and 3.87 g (0.0276 mol) of benzoyl chloride there was obtained 5.28 g of light yellow, solid product. The crude product was recrystallized from methanol-water; a total of 4.47 g (64.1%) of light yellow 3, mp 73-76°, was obtained when all crops were combined. Chromatography (benzene) of this material removed most of the color, and subsequent vacuum sublimation at 75° (1.0 mm) for 5 days gave an analytical sample of essentially white 3, mp 76.5-77.0°.

Caled for $\hat{C}_{15}H_{17}NO_2$: C, 74.04; H, 7.04; N, 5.76. C, 73.77; H, 6.91; N, 5.82. Anal. Found:

Ethyl 4-(1-Aminoethylidene)-5-oxohexanoate (21).-The synthetic procedure outlined previously for compounds 1 and 5 was used to prepare 21 from 8.00 g (0.0400 mol) of ethyl 4-acetyl-5-oxohexanoate.²³ Recrystallization of the crude product (4.58 g) from cyclohexane-ethyl acetate yielded 3.43 g (43.2%) of off-white 21, mp 85-87°. Chromatography (ethyl acetate) of this material followed by one recrystallization from waterethanol and two from cyclohexane-ethyl acetate produced white platelets. The analytical sample of 21 was then obtained by vacuum sublimation at 83° (0.5 mm): mp 87.0-88.0°; ir

⁽¹²⁾ F. C. Pennington and W. D. Kehret, J. Org. Chem., 32, 2034 (1967).
(13) C. M. Hofmann and S. F. Safir, *ibid.*, 27, 3565 (1962).
(14) J. C. Powers, *ibid.*, 30, 2534 (1965).

⁽¹⁶⁾ C. A. Grob, Helv. Chim. Acta, 33, 1787 (1950).

⁽¹⁷⁾ H. P. Schad, ibid., 38, 1117 (1955).

⁽²³⁾ E. Bullock, A. W. Johnson, E. Markham, and K. B. Shaw, J. Chem. Soc., 1430 (1958).

				(Continuea	9					
	_	_	-	-	~	λ_{max}	, mµ			
Compd	R	Rı	R ₂	Ra C C	Solvent	Caled	Obsd	$\Delta \lambda_{\max}$	e	Ref
19	CH_{3}	H	CH ₈	$C_6H_5CH_2$	C	010	302		17,300	
20	CH₃	CH ₃	CH3	H	M	312	316	-4	15,000	
21	CH_3	$C_2H_5O_2CCH_2CH_2$	CH₃	H	M	312	313	1	14,800	
22	C_6H_5	Н	Н	H	A	3231	324	-1	19,000	k
			~	~~			242	-	11,000	k
23	C_6H_5	H	CH_3	Н	м	331^{i}	329	2	19,400	
							240		8670	
							328		19,700	m
							240		8,670	m
24	CH_3	H	CH₃	CH₃CO	M	292	293	-1	17,000	
25	CH_3	H	CH_3	ClCH₂CO	M	292	292	0	16,300	
25	CH_3	H	CH_3	ClCH ₂ CO	C		290		16,500	
26	CH_{3}	H	CH_3	C_6H_5CO	\mathbf{M}	308	310	$^{-2}$	15,900	
							286¢		10,200	
						- 	239		11,000	
27	CH_3	H	CH_8	$p ext{-} ext{ClC}_6 ext{H}_4 ext{CO}$	\mathbf{M}	308	311	-3	16,200	
							286°		10,100	
							247		15,200	
28	CH_3	CH_{3}	CH_8	$CH_{3}CO$	\mathbf{M}	302	303	-1	12,400	
28	CH_3	CH_3	CH_3	$CH_{3}CO$	C		307		14,800	
29	CH_3	CH_3	CH_{3}	$C_{6}H_{6}CO$	\mathbf{M}	318	322	4	13,000	
							285°		5190	
							239		10,300	
29	CH_3	CH_3	CH_3	C_6H_5CO	E		322		14,200	
							285°		5790	
							238		10,800	
29	CH_3	CH_3	CH_{3}	$C_{6}H_{5}CO$	\mathbf{C}		232		14,000	
							286°		5350	
							240		10,200	
30	C_6H_5	H	CH_3	$CH_{3}CO$	\mathbf{M}	321^{i}	318	3	22,200	
							260		6490	
31	C_6H_5	H	CH_3	C_6H_5CO	\mathbf{M}	337^{i}	332	5	23,200	
							249		12,600	
32	$CH_{3}O$	\mathbf{H}	H	c-C ₆ H ₁₁	\mathbf{MC}	281	281	0	19,000	n
33	C_2H_5O	H	CH_3	H	$95\%~{ m A}$	282	275	7	18,200	0
34	C_2H_5O	H	\mathbf{CH}_3	$-\mathrm{CH}_2-p$	\mathbf{M}	292	293	-1	32,100	q
							280		31,100	q
35	C_2H_5O	H	CH_{3}	$C_6H_5CH_2$	$95\%~{ m A}$	292	287	5	$\sim \!\! 23,400$	r
3 6	C_2H_5O	H	CH_3	CH₃CO	$95\%~{ m A}$	272	271	1	18,600	0
		=		· · ·			. –	-	,	

TABLE I

^a A = ethanol, C = cyclohexane, E = ether, H = heptane, M = methanol, MC = methylene chloride. ^b Calculated – observed. ^c Shoulder. ^d See ref 12. ^e C. A. Grob and H. J. Wilkens, *Helv. Chim. Acta*, **50**, 725 (1967). ^f E. Wenkert, R. L. Johnson, and L. L. Smith, *J. Org. Chem.*, **32**, 3224 (1967). ^g J. Romo and A. Romo de Vivar, *J. Amer. Chem. Soc.*, **81**, 3446 (1959). ^h P. J. Brignel, U. Eisner, and P. G. Farrell, *J. Chem. Soc.*, *B*, 1083 (1966). ^f N. H. Cromwell and W. R. Watson, *J. Org. Chem.*, **14**, 411, (1949). ^j Based upon a λ_{max} of 248 mµ for the parent compound, phenyl vinyl ketone; see ref 10. ^k See ref 10. ^l Based upon a λ_{max} of 256 mµ for the parent compound, 1-phenyl-2-buten-1-one: G. W. Cannon, A. A. Santilli, and P. Shenian, *J. Amer. Chem. Soc.*, **81**, 1660 (1959). ^m M. M. Robison, W. G. Pierson, L. Dorfman, B. F. Lambert, and R. A. Lucas, *J. Org. Chem.*, **31**, 3206 (1966). ^s See ref 18. ^o See ref 16. ^p Two identical chromophore units are connected by an ethylene bridge. ^g See ref 13. ^r See ref 17.

 $(CHCl_{3})$ 3480 (NH), 1715 (ester C=O), 1600 (C=O), and 1570 cm⁻¹ (C=C).

Anal. Calcd for $C_{10}H_{17}NO_3$: C, 60.28; H, 8.60; N, 7.03. Found: C, 60.46; H, 8.80; N, 7.15.

5,5-Dimethyl-3-amino-2-cyclohexen-1-one (45).—This compound was prepared from 5,5-dimethyl-1,3-cyclohexanedione and ammonia according to the procedure of Zymalkowski and Rimek.²⁴ Yields as high as 90% of pure 45 were obtained, mp 165-166.5° (lit.²⁴ mp 162-164°).

5,5-Dimethyl-3-methylamino-2-cyclohexen-1-one (46).—Substitution of methylamine for ammonia in the above synthesis resulted in an 88% yield of the colorless 46. A sample was recrystallized from acetonitrile for spectral purposes, mp 153-154.5 (lit.²⁵ mp 156°).

3-Acetylamino-2-cyclohexen-1-one (49).—A suspension of 2.50 g (0.0225 mol) of light yellow 3-amino-2-cyclohexen-1-one, mp 120–129° (lit.²⁴ mp 128–131°), in 15 ml of acetic anhydride

and 4 drops of pyridine was heated just to reflux under a dry atmosphere. When the resulting orange solution was allowed to stand at room temperature for 5 hr, 1.47 g of 49, mp 164–166°, was deposited. Concentration of the mother liquor followed by recrystallization of the solid residue from benzene-methanol afforded an additional 1.00 g of product, mp 162–165°. After the crude product (2.47 g, 71.7%) had been chromatographed (1:2 ethyl acetate-cyclohexane) and then recrystallized from acetonitrile, a sample of 49 was submitted for analysis: mp 166.5–167.5°; nmr (CDCl₈) δ 8.7 (broad s, 1, NH), 6.82 (s, 1, CH=C), 2.37 (m, 6), and 2.16 ppm (s, 3, CH₃CO).

CH=C), 2.37 (m, 6), and 2.16 ppm (s, 3, CH₃CO). Anal. Calcd for C₃H₁₁NO₂: C, 62.73; H, 7.24; N, 9.15. Found: C, 63.00; H, 7.23; N, 9.21.

5,5-Dimethyl-3-acetylamino-2-cyclohexen-1-one (50).—A suspension of 12.93 g (0.0928 mol) of 45 in 60 ml of acetic anhydride and 2.0 ml of pyridine was heated slowly until starting material dissolved, and then refluxed under a dry atmosphere for 1 hr. A semicrystalline residue resulted when the reaction solution was concentrated. Use of acetone as a recrystallizing solvent gave 14.18 g (84.3%) of colorless 50, mp 153–157°, in two crops. Two additional recrystallizations from acetone provided white cubelets of 50: mp 156.3–157.8°; nmr (CDCl₈) δ 9.15 (s, 1, NH),

⁽²⁴⁾ F. Zymalkowski and H. Rimek, Arch. Pharm. (Weinheim), 294, 759 (1961); Chem. Abstr., 57, 7228h (1962).

⁽²⁵⁾ J. Goerdeler and U. Keuser, Chem. Ber., 97, 2209 (1964).

 TABLE II

 ULTRAVIOLET ABSORPTION DATA FOR HETEROCYCLIC cis-s-trans Compounds

^a See Table I, footnote a. ^b See Table I, footnote b. ^c Includes solvent shift measured for compound **38**. ^d J. C. Martin, K. C. Brannock, and R. H. Meen, J. Org. Chem., **31**, 2966 (1966). ^e A. I. Meyers, A. H. Reine, J. C. Sicar, K. B. Rao, S. Singh, W. Weidmann, and M. Fitzpatrick, J. Heterocycl. Chem., **5**, 151 (1968). ^f M. von Strandtmann, M. P. Cohen, and J. Shavel, Jr., J. Org. Chem., **31**, 797 (1966). ^g See W. Sobotka, W. N. Beverung, G. G. Munoz, J. C. Sicar, and A. I. Meyers, *ibid.*, **30**, 3667 (1965).

 $6.88~(s,\,1,\,CH=\!\!\!\!\!\!\!-C),\,2.42~(s,\,2,\,CH_2C=\!\!\!\!\!\!\!\!-C),\,2.25~(s,\,2,\,CH_2CO),\,2.17~(s,\,3,\,CH_3CO),\,and\,1.10~ppm~(s,\,6).$

Anal. Calcd for $C_{10}H_{15}NO_2$: C, 66.27; H, 8.34; N, 7.73. Found: C, 66.25; N, 8.56; N, 7.96.

5,5-Dimethyl-3-benzoylamino-2-cyclohexen-1-one (51).—A stirred suspension of 4.00 g (0.0287 mol) of 45 in 125 ml of dry²⁶ 1,2-dimethoxyethane and 2.27 g (0.0287 mol) of pyridine was heated until solution was effected. Heating was discontinued and a solution of 4.03 g (0.0287 mol) of benzoyl chloride in 25 ml of dry²⁶ 1,2-dimethoxyethane was added dropwise. The addition of the acid chloride was accompanied by the formation of light brown oil droplets. After being stirred overnight at room temperature, the reaction mixture now consisted of a viscous deep red-brown lower layer and a much larger light orange upper layer. Because the lower layer contained no product (tlc)²⁰ and was essentially water soluble, it was discarded after decantation of the light orange solution. Removal of solvent from the upper layer gave an orange syrup which partially crystallized upon standing. Recrystallization of this material from ethyl acetate gave 1.19 g of yellow crystals, mp 142-146°. A satisfactory second crop could not be obtained; so the mother liquor was diluted with 40 ml of ethyl acetate prior to being washed with 60 ml of 5% HCl. An ethyl acetate (50 ml) extract of the acid wash was combined with the original solution. When the resulting solution was dried (Na₂SO₄) and freed of solvent, 2.14 g of a yellow solid was obtained. This material was reduced to a powder and then triturated with 5% NaHCO₃. Recrystallization of the solid residue from acetonitrile gave an additional 0.86 g of yellow 51, mp 146-148°, in several crops. Total yield of product was 2.05 g (29.4%). Chromatography (ethyl acetate) of the yellow product followed by vacuum sublimation at 145° (1 mm) for 2 days yielded colorless material. An analytical sample of 51 was prepared by recrystallization from ethyl acetate: mp 148.5–149°; nmr (CDCl₃) δ 8.98 (s, 1, NH), 7.85 (m, 2), 7.46 (m, 3), 6.92 (s, 1, CH=C), 2.57 (s, 2, CH₂C=C), 2.15 (s, 3, CH₃CO), and 1.06 ppm (s, 6). *Anal.* Calcd for C₁₅H₁₇NO₂: C, 74.04; H, 7.04; N, 5.76. Found: C, 74.28; H, 7.14; N, 5.92.

Results and Discussion

Spectral data, including a comparison of calculated and observed values for λ_{max} , is included in Tables I–IV. Arrangement of the various compounds is governed by the stereochemistry of the conjugated system¹¹ and location of the nitrogen atom, although later discussion will focus on functionality.

Designation of the absorption bands as $\pi \rightarrow \pi^*$ transitions is supported both by the locations and intensities of the various maxima. The π -p conjugate interaction of the parent α,β -unsaturated carbonyl system with the β nitrogen's unshared electron pair

⁽²⁶⁾ The solvent was distilled directly from lithium aluminum hydride into the reaction vessel and dropping funnel.

TABLE III ULTRAVIOLET ABSORPTION DATA FOR ISOCYCLIC AND ACYCLIC trans-s-trans Compounds

^a See Table I, footnote a. ^b See Table I, footnote b. ^c G. H. Alt and A. J. Speziale, J. Org. Chem., 30, 1407 (1965). ^d See ref 10. • K. Bowden, E. A. Braude, E. R. H. Jones, and B. C. L. Weedon, J. Chem. Soc., 45 (1946). / See footnote j, Table I. G. N. Walker, J. Org. Chem., 27, 4227 (1962). * See ref 18. * E. Winterfeldt and H. Preuss, Chem. Ber., 99, 450 (1966). * See ref 17. * See ref 16.

would be expected^{9c,10,27} to produce the bathochromic and hyperchromic effects which are observed. Measurement of solvent effects also provides additional confirmatory evidence, although considerable variation in the relationship between absorption maxima and solvent polarity exists in the present work. A solvent correction, relative to ethanol or methanol, of $+11 \text{ m}\mu$ has been proposed⁸ for the $\pi \to \pi^*$ bands of α,β -unsaturated ketones in hexane solution. This compares with extreme values in cyclohexane of $+24 \text{ m}\mu$ for the ciss-trans-vinylogous amide, 1,2,3,4,7,11b-hexahydro-6Hdibenzo [a, f] quinolizin-13(12H)-one (43),²⁸ and -4 m μ for the chelated cis-s-cis vinylogous imide, 4-acetylamino-3-methyl-3-penten-2-one (28). Comments on this apparent discrepancy will be postponed until specific compound categories are examined.

Many of the compounds chosen as examples for the present study exist as stable stereoisomers, owing to

partial or complete incorporation of the conjugated system into a cyclic ring. In the case of acyclic representatives, stereochemical classification was based largely on nmr and infrared studies in chloroform and/or less polar solvents.²⁹ However, solvent-dependent interconversions of *cis* and *trans* isomers¹¹ have recently been observed for acyclic vinylogous amides [-NHC==CC-(O)-]^{30,31} and vinylogous urethans (-NHC=CCO-OR)^{16,17,30-33} derived from primary amines. Relative isomer stability in solution would depend upon several factors, including steric effects, intramolecular or intermolecular hydrogen bonding of solute molecules, and solute-solvent interactions. Unless there is sufficient steric resistence to formation of the six-membered chelate ring, the intramolecularly hydrogen-bonded

(33) W. E. Truce and D. G. Brady, J. Org. Chem., 31, 3543 (1966).

⁽²⁷⁾ W. R. Benson and A. E. Pohland, J. Org. Chem., 29, 385 (1964).

⁽²⁸⁾ See Table II., footnote g.

⁽²⁹⁾ For details, see the appropriate references for specific compounds.

⁽³⁰⁾ G. O. Dudek and G. P. Volpp, J. Amer. Chem. Soc., 85, 2697 (1963).
(31) C. H. McMullen and C. J. M. Stirling, J. Chem. Soc., B, 1217 (1966).
(32) K. Herbig, R. Huisgen, and H. Huber, Chem. Ber., 99, 2546 (1966).

 TABLE IV

 Ultraviolet Absorption Data for Heterocyclic trans-s-trans Compounds

							λ_{max}	, mμ			
\mathbf{Compd}	R	R_1	\mathbf{R}_2	R	s Sol	vent ^a	Caled	Obsd	$\Delta \lambda_{\max} b$	e	Ref
64	CH_{3}	\mathbf{H}	\mathbf{H}	H	Α		300	301	-1	21,150	C
65	$C_2H_5O_2CCH_2CH$	2 H	\mathbf{H}	H	95	% A	300	302	-2	26,000	d
66	CH_3	H	H	CH_3	Α		310	315	5	31,300	e
67	CH_3	н	\mathbf{H}	HOCH	I_2CH_2 A		310	311	$^{-1}$	29,000	e
68	CH_3	N=	С Н	CH_3	Α		310	298	12	30,000	f
69	C_6H_5	$C_{6}H$	5 H	\mathbf{H}	\mathbf{M}		333¢	305	28	24,000	h
								227		10,400	h
70	CH_3	\mathbf{H}	0=	C ₆ H ₅ C	H ₂ A		290	294	-4	16,600	i
71	C_2H_5O	\mathbf{H}	\mathbf{H}	\mathbf{H}	95	% A	282	286	4	21,000	d
72	$CH_{3}O$	\mathbf{H}	\mathbf{H}	CH_8	Α		292	295	-3	23,600	f
73	$\rm NH_2$	\mathbf{H}	\mathbf{H}	\mathbf{H}	95	% A	282	287	-5	19,500	d
74	$\rm NH_2$	н	н	CH_3	Α		292	297	-5	27,600	e
75^{j}	$\rm NH_2$	н	\mathbf{H}	CH3C() М		272	271	1	19,400	
				0							
						, mμ		_			
\mathbf{Compd}	R	\mathbf{R}_1	\mathbf{R}_{2}	$Solvent^a$	Calcd	Obsd	2	λmax ^b	e		Ref
76	H	н	н	Α	302^{k}	298		4	30,8	00	l
77	H	$C_{2}H_{5}$	\mathbf{H}	A	312^{k}	304		8	31,6	00	l
78	H	н	0==	\mathbf{M}	282 ^k	278		4	30,2	00	
79	H	CH_8	0=	\mathbf{M}	292^{k}	279		13	27,4	00	
79	H	CH_3	0=	\mathbf{E}		272			30,5	00	
79	H	CH_{3}	0==	С		271			29,6	00	
80	C_6H_5	H	0==	\mathbf{M}	282^{k}	280		2	27, 3	00	
81	C_5H_5	CH_3	0=	\mathbf{M}	292^{k}	281		11	27,2	00	

^a See Table I, footnote a. ^b See Table I, footnote b. ^c M. Freifelder, J. Org. Chem., 29, 2895 (1964). ^d See ref 15. ^e See ref 19. ^f See ref 14. ^g See footnote j, Table I. ^b See R. E. Lyle and D. A. Nelson, J. Org. Chem., 28, 169 (1963). ⁱ A. G. Anderson, Jr., and G. Berkelhammer, J. Amer. Chem. Soc., 80, 992 (1958). ⁱ This compound was kindly supplied by Professor L. D. Quin of Duke University; see ref 15. ^k No allowance is made for the location of the carbon-carbon double bond. ⁱ See footnote e, Table I.

cis-s-cis structure II is distinctly,^{32,33} and in many cases completely,^{17,30,34} favored in dilute solution in nonpolar solvents such as $C_{\theta}H_{\theta}$ and CCl_{4} . Increase in solution concentration and/or use of polar solvents, particularly those which form strong hydrogen bonds, should enhance intermolecular bonding and so displace the equilibrium in favor of the extended *trans* isomer III or IV. This conclusion has been amply verified in the literature,^{17,30,31,35}

The above statements regarding isomer stability can also be applied to other classes of acyclic compounds in this paper. Strengthening of the intramolecular hydrogen bond via N-acylation should enhance the relative stability of the cis-s-cis structure II, and our results for chelatable vinylogous imides, -(O)CNHC=

(34) G. O. Dudek and R. H. Holm, J. Amer. Chem. Soc., 83, 2099 (1961); 84, 2692 (1962).

(35) For example, Schad¹⁷ found that in CCl₄ at 20° the *trans* isomer (61) of ethyl 3-benzylaminocrotonate completely isomerizes to the *cis* form (85) within 30 min. In ethanol at 20° an equilibrium ratio of the two isomers (35 to 61) of *ca*. 3 is attained in 70 hr. It should be noted that whenever comparisons are possible, *i.e.*, identical concentrations in the same solvent and analogous structures, the chelated *cis-s-cis* form II of a vinylogous amide is more stable relative to the *trans* form than is the case with the corresponding urethan and its weaker intramolecular hydrogen bond.^{20,31,34}

CC(O)-, support this prediction. Conversely, acyclic compounds derived from secondary amines (see Table III) can not undergo chelation, and here the *trans* isomer III or IV should be favored, unless opposing steric effects exist.

Assignment of substituent constants to β -amino, β -N-alkylamino, and β -N-acylamino groups of various α,β -unsaturated carbonyl derivatives is a main objective of the present investigation. To facilitate understanding of Tables I–IV by the reader, these values are presented in Table V, along with essential ones from the literature. Their justification will become explicit as particular classes of compounds are now discussed.

Vinylogous Amides.—It is generally agreed that the absorption intensities of the $\pi \rightarrow \pi^*$ transitions of *trans* isomers are greater than those for the *cis* isomers of a conjugated system.³⁶ Consistent agreement with this guideline exists for fixed *cis* compounds 1, 10, 11, 14, and 40–44, and fixed *trans* compounds 45–48, 64–69, 76, and 77. Molar extinction coefficients (in methanol or ethanol) range in value from 11,000 (10) to 17,200 (42) for *cis* isomers and from 21,150 (64) to 32,500 (48)

(36) Reference 9d, p 20.

Constants for Calculation of Absorption Maxima of α,β -Unsaturated Carbonyl Derivatives in Ethanol

Parent system ^a	Ketone, 215 mµ	Ester, 197 m μ
α -Alkyl ^a	+10	+10
β -Alkyl ^a	+12	+10
Exocyclic double bond ^a	+5	+5
Endocyclic double bond ^a	+5	+5
(five-membered ring)		
cis-β-Amino	+75	+75
trans-β-Amino	+65	+65
β -N-Alkyl ^b	+10	+10
β -N-Acetyl ^b	-10	-10
β -N-Benzoyl ^b	+6	• • •

^a Literature values from ref 9c, pp 218, 219. ^b To be added to constants for *cis*- or *trans-\beta*-amino.

for the *trans* forms. Extension of this criterion to acyclic examples provides confirmatory evidence for previous stereochemical assignments resulting from nmr and infrared studies,²⁹ and also substantiates provisional judgments based upon structural analogy.

An initial value of the substituent constant for the chelated cis- β -amino group (-NH₂) can be derived from the observed λ_{max} of 4-amino-3-penten-2-one (17) in methanol solution. Dudek and Holm³⁴ have deter-

mined the nmr spectrum of 17 in deuteriochloroform and were able to detect only the chelated *cis-s-cis*-structure. The relative stability of this form could only increase in very dilute cyclohexane solution. Therefore, the close correlation of the molar extinction coefficients³⁷ of 17 in methanol (ϵ 15,500) and cyclohexane (ϵ 13,500) indicates that no substantial change in stereochemistry has occurred in the polar, strongly hydrogen-bonding solvent methanol.²⁸ Subtraction of constant values of 215 and 12 m μ for parent enone and β -alkyl, respectively, from the observed λ_{max} of 299 m μ for 17 yields a provisional value of +72 m μ for the chelated *cis-\beta*amino group.

Compounds 5, 20, and 21 also possess the indicated stereochemistry in view of the close similarity in structure and absorption intensity between them and 17. Cross conjugation of a phenyl group with the vinylogous amide chromophore, as in 3-amino-1-phenyl-2-propen-1-one (22) and 3-amino-1-phenyl-2-buten-1-one (23), results in a hyperchromic effect of sufficient magnitude so as to blur the distinction between *cis* and *trans* isomers. Consequently, assignment of a chelated structure to 22 and 23 is not absolute.³⁹ N-Alkylation, as in the cases of 8 and 19, is also accompanied by a hyperchromic effect, particularly when the alkyl group is benzyl.⁴⁰ However, both 19 and its N-methyl analog

18 yield nmr data³⁴ (deuteriochloroform as solvent) consistent only with the chelated form. Even in a solvent as polar as pyridine or acetone, 19 retains its stereochemical integrity.³⁴ Comparison of the observed λ_{\max} values of 17 and 18 in methanol permits a direct calculation of the bathochromic effect of N-alkylation, *i.e.*, +10 m μ .

A final substituent constant of $+75 \text{ m}\mu$ for the chelated cis- β -amino group is obtained when calculated λ_{\max} values are adjusted to agree within $\pm 5 \text{ m}\mu$ of the observed values for 12 of the 14 model compounds in Table I. The small differences for 22 and 23 are probably fortuitous in view of the large deviation between calculated and observed λ_{\max} values for similar *trans* compounds 55 and 56 (vide infra). Significant deviations exist for compounds 8-10. Apparently, the conjugation extends to the aromatic ring in both 8 and 9. An explanation for the low band position observed for 10 is not readily apparent, since 10 is structurally quite similar to the "normal" compound 11.

Application of substituent constants calculated for chelated *cis* vinylogous amides to *cis-s-trans* compounds **40–44** (Table II) is quite successful. Evidently, the absence of intramolecular hydrogen bonding in these compounds does not result in the expected hypsochromic shift,⁴¹ and the nomenclature in Table V reflects this observation.

As noted earlier in this section, molar extinction coefficients are relatively large for trans vinylogous amides, and an ϵ_{max} of 30,000 or more is not unusual for the examples shown in Tables III and IV. For many of these compounds stereochemical mobility, particularly s-cis \rightleftharpoons s-trans, cannot be arbitrarily excluded. In most of the cases, however, β hydrogen is *cis* to the carbonyl group and the stable conformations of compounds 52, 53, and 64-67 are presumably s-trans, the arrangement generally favored with α,β -unsaturated ketones.⁴² The steric properties of the β -methyl group⁴² in 54 and of the 1-phenyl group⁴³ in 55 and 56 would result in an s-cis conformation for these molecules if chromophore planarity is retained. Substitution at the 4 position of the ring in 68 and 69 produces a hypsochromic effect, which can be examined more fruitfully as substituent constants are now discussed.

The relatively close agreement between calculated and observed values for *cis* vinylogous amides unfortunately does not extend to the λ_{max} values of the *trans* isomers. An increment of $\pm 10 \text{ m}\mu$ is retained for a β -N-alkyl substituent, although its apparent batho-

⁽³⁷⁾ Although the position of λ_{\max} for $\pi \to \pi^*$ transitions is usually affected by solvent polarity, it is not accompanied by a marked change in absorption intensity.⁹⁰

⁽³⁸⁾ If significant isomerization of cis-17 to the trans form had taken place in methanol solution, one should observe an e_{max} much closer to the measured value of 28,000 for 5,5-dimethyl-3-amino-2-cyclohexen-1-one (45), a cyclic trans-s-trans compound which duplicates the skeletal features of 17. A more subtle change in stereochemistry to the nonchleated cis-s-trans conformer owing to substantial solvation of carbonyl and amino groups by methanol would result in an increase in nonbonded interactions, as exemplified in studies of 1-acetylcyclohexene and 2-methyl-1-acetylcyclohexene: R. L. Erskine and F. S. Waight, J. Chem. Soc., 3425 (1960).

⁽³⁹⁾ Two isomers were isolated in the synthesis of **22**, and the spectral values in Table I represent a compromise.¹⁰

⁽⁴⁰⁾ This may be due to homoconjugation of the aromatic ring with the vinylogous amide chromophore: E. Santos, J. Padilla, and P. Crabbé, Can. J. Chem., 45, 2275 (1967).

⁽⁴¹⁾ L. K. Ferguson, "The Modern Structural Theory of Organic Chemistry," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963, p 528.
(42) Reference 9c, p 421.

⁽⁴³⁾ S. Searles, Jr., R. A. Sanchez, R. L. Soulen, and D. G. Kundiger, J. Org. Chem., 32, 2655 (1967).

chromic effect varies from +1 (46 vs. 45) to $+14 \text{ m}\mu$ (66 vs. 64). Assignment of a substituent constant of $+65 \text{ m}\mu$ to trans- β -amino appears to give a reasonable correspondence both in the frequency and absolute magnitudes of positive and negative deviations from the calculated λ_{max} values.

Inspection of Tables III and IV indicates that values of $\Delta\lambda_{\rm max}$ are acceptable for those trans vinylogous amides where steric hindrance to conjugation is minimal, *i.e.*, for compounds 45, 64-67, and 76. In contrast, $\Delta \lambda_{max}$ for N,N-dialkyl compounds 48 and 52–56 varies from +9 (48) to -11 m μ (55). Qualitative examination of their molecular models does indicate that an increase in nonbonded interactions between an N-alkyl group and the *cis* α hydrogen accompanies rehybridization of the nitrogen atom from sp^3 to sp^2 . However, the anticipated hypochromic effect owing to loss of chromophore planarity does not materialize. Because of the large variation observed in $\Delta \lambda_{max}$, extreme caution must be exercised when assignment of a trans configuration to a vinylogous amide is based solely upon the location of the absorption band. The comparatively low-wavelength absorptions of both 3-acetyl-4-cyano-1-methyl-1,4,5,6-tetrahydropyridine (68)¹⁴ and 3-benzoyl-4-phenyl-1,4,5,6-tetrahydropyridine (69)⁴⁴ are in accord with the studies of Hofmann, Kosower, and Wallenfels⁴⁵ concerning the "methyl effect" in the uv spectra of the 1,4-dihydropyridines.

The existence of a pronounced solvent effect for nonchelated *cis* and *trans* vinylogous amides has been noted in the literature,²⁸ and the large shift of $-17 \text{ m}\mu$ relative to methanol in λ_{max} for the *trans-s-trans* compound **45** in ether⁴⁶ is as expected. In contrast, the chelated *cis-s-cis* vinylogous amides **17–19** in cyclohexane show "normal"⁸ shifts of -13, -7, and $-9 \text{ m}\mu$, respectively, again relative to methanol. Evidently, chelation provides important stabilization of the excited state in a nonpolar solvent.

Given the magnitude of substituent constants for the cis- β -amino and trans- β -amino groups, it would appear that the vinylogous amide chromophore can be successfully detected by the uv spectroscopy relative to alternative arrangements of the nitrogen atom and the two multiple bonds. Assignment of stereochemistry can then be made on the basis of the molar extinction coefficients in alcohol solution, if conjugation involving an aromatic ring is absent. For vinylogous amides lacking the benzoyl group and/or an N-benzyl substituent, values of ϵ_{\max} range from 11,000 (10) to 18,100 (18) for cis and from 21,150 (64) to 32,500 (48) for trans isomers. Use of substituent constants to confirm these results would be possible for cis compounds, and, with care, for trans compounds as well.

Vinylogous Imides.—Previous arguments regarding the stereochemical integrity of vinylogous amides are also applicable in the present context. In the case of acyclic vinylogous imides the spectral consequences of solvent variation are of considerable importance. No significant dependence of either λ_{\max} or ϵ_{\max} upon solvent polarity was observed for three model compounds, 4chloroacetylamino-3-penten-2-one (25), 4-acetylamino3-methyl-3-penten-2-one (28), and 4-benzoylamino-3methyl-3-penten-2-one (29). Evidently, the chelated

cis isomer enjoys unique stability in solution owing to strong intramolecular hydrogen bonding.⁴⁷ The absence of a solvent-induced shift in band position indicates that chelation also provides substantial stabilization of ground and excited states in a polar (methanol) as well as a nonpolar (cyclohexane) solvent.

The introduction of an electron-withdrawing acyl group at the nitrogen atom of a vinylogous amide should give a compound absorbing at shorter wavelength and with reduced intensity. However, no consistent pattern emerges when reduced intensity. However, no consistent pattern emerges when one examines the molar extinction coefficients of model vinylogous imides in Tables I-IV. A small hypochromic effect accompanies N-acylation in most cases, and *trans* isomers generally show higher absorption intensities than *cis* ones.

Comparison of observed λ_{max} values demonstrates that N-acetylation of a vinylogous amide results in a hypsochromic shift in band position. Numerical values for this effect range from -4 (15 vs. 14) to $-14 \text{ m}\mu$ (2 vs. 1). If previously calculated substituent constants for β -amino (*cis* or *trans*) and β -N-alkyl are retained and a substituent increment of $-10 \text{ m}\mu$ is assigned to β -N-acetyl, then $\Delta\lambda_{max}$ for 11 model Nacetyl compounds exceeds $\pm 4 \text{ m}\mu$ in only two examples, chelated *cis-s-cis* compounds 6 and 12. However, comparison on an individual basis of 6 with 5 and of 12 with 10 yields constants of -7 and $-9 \text{ m}\mu$ respectively, for β -N-acetyl.

Additional support is provided by spectral data for heterocyclic trans-s-trans vinylogous imides 70 and 78-81. Each of these compounds can be envisioned as resulting from the replacement of a methylene group $(-CH_{2})$ in the vinylogous amide by a carbonyl group (C=O). Based upon substituent constants of +10 m μ for β -N-alkyl and -10 m μ for β -N-acetyl, a hypsochromic shift of $-20 \text{ m}\mu$ should manifest itself in the observed λ_{max} . Experimentally, the results are as follows: 69 vs. 66, -21; 78 vs. 76, -20; 79 vs. 77, -25; 80 vs. 76, -18; 81 vs. 77, $-23 \text{ m}\mu$. Calculated values of λ_{max} for the N-methyl compounds 79 and 81are quite high, and presumably are due to steric interaction of the methyl group with the α vinylic hydrogen, a phenomenon discussed earlier for related trans vinylogous amides.

Three heterocyclic *cis-s-cis* vinylogous imides, **37–39**, were investigated, and the data contrast strongly with the results presented above. There appears to be a normal spectral response to alkyl substitution and solvent polarity. Explanation of the observed band intensities and positions requires additional information, and these compounds must be regarded as exceptional for the time being.

A moderate bathochromic shift in the observed λ_{max} , ranging from +3 (31 vs. 23) to +11 m μ (26 vs. 17),

⁽⁴⁴⁾ See Table IV, footnote h.

⁽⁴⁵⁾ D. Hofmann, E. Kosower, and K. Wallenfels, J. Amer. Chem. Soc., 83, 3314 (1961).

⁽⁴⁶⁾ Compound 45 and related ones are essentially insoluble in cyclohexane.

⁽⁴⁷⁾ This conclusion is supported by nmr data.¹

accompanies N-benzoylation and indicates that the aromatic ring is not completely insulated from the original vinylogous amide chromophore. The final substituent constant of $+6 \text{ m}\mu$ for β -N-benzoyl is obtained in the manner outlined previously for β -N-acetyl.

Use of substituent increments to distinguish between cis or trans vinylogous imides appears quite feasible. For 15 out of the 18 cis compounds studied, $\Delta \lambda_{\text{max}} \leq$ $0 \text{ m}\mu$. Only one exception, compound 12, remains if the two examples with 1-phenyl substituents (30 and 31) are excluded. The relative insensitivity of the band position of a chelated *cis-s-cis* compound to solvent polarity further characterizes this isomer. A total of eight trans-s-trans compounds were examined, and the calculated λ_{max} exceeds the observed value for all compounds except 1-benzyl-5-acetyl-3,4-dihydro-2-pyridone (70). The (theoretical) assignment of a cis configuration to 70 would yield a $\Delta \lambda_{max}$ of +6 m μ , clearly an unacceptable value. Comparison of the molar absorptivity of a new vinylogous imide with those of structural analogs in Tables I–IV would likely provide additional proof of configuration.

Vinylogous Urethans.—Although our primary goal was the investigation of vinylogous amides and imides, we were naturally interested in applying the results to other related systems. The preparation of a number of β -amino α,β -unsaturated esters (vinylogous urethans), together with uv data, was recently reported by Huisgen, Herbig, Siegl, and Huber,¹⁸ and the stereochemistry of these compounds was firmly established through nmr and infrared measurements. Inclusion of several isolated examples from the literature provided a total of five *cis* and eight *trans* model compounds.

It appears that stereochemical assignments can be given to vinylogous urethans on the same basis previously advanced for the corresponding amides. Omitting N-benzyl compounds **35** and **61**, molar extinction coefficients vary from 15,800 (4) to 19,000 (32) for *cis-s-cis* structures and from 21,000 (71) to 32,500 (59) for *trans* compounds in polar solvents. An ϵ_{max} of 32,100 for diethyl 3,3'-(ethyldimino)dicrotonate (34) reflects the presence of two identical vinylogous urethan chromophore units in the same molecule.

Apparently, the newly obtained substituent constants for β -amino and β -N-alkyl can effectively supplement intensity measurements for *trans* vinylogous urethans.⁴⁸ Only in the case of ethyl 3-benzylaminocrotonate (61) does $\Delta\lambda_{\max}$ for *trans* isomer exceed the limits of ± 4 m μ . Similar calculations for the *cis-s-cis* compounds 4 and 32-35, found in Table I, show no correspondingly ueful trend.

Grob¹⁶ reinvestigated the acetylation of ethyl 3aminocrotonate and isolated both geometric isomers (36 and 63) of ethyl 3-acetylaminocrotonate, an Nacyl vinylogous urethan. Although their ϵ_{max} values are identical, band positions are as expected for 36 and 63.

Vinylogous Ureas.—A parent value for the $\pi \rightarrow \pi^*$ band position of an α,β -unsaturated amide apparently has not been reported in the literature. The λ_{\max} values calculated for 1,4,5,6-tetrahydronicotinamide (73)¹⁴ and its N-methyl and N-acetyl derivatives 74¹⁹ and 75,¹⁴ respectively, are based upon a constant of 197 mµ for the related α,β -unsaturated ester chromophore. Before the apparent consistency in $\Delta\lambda_{\max}$ found here can be confirmed, additional spectral data for other vinylogous ureas (and parent α,β -unsaturated amides) is obviously needed.

Registry No.-1, 23645-69-4; 2, 23645-70-7; 3, 23674-49-9; 4, 10472-19-2; 5, 23652-78-0; 6, 23652-79-1; 7, 23652-80-4; 8, 23652-81-5; 9, 23652-82-6; **10**, 13369-48-7; **11**, 13369-51-2; **12**, 13369-50-1; **13**, 13369-52-3; **14**, 5297-31-4; **15**, 5088-57-3; **16**, 2802-09-7; 17, 23652-84-8; 18, 23652-85-9; 19, 23652-86-0; 20, 23652-87-1; 21, 23652-88-2; 22, 23652-89-3; 23, 23652-90-6; 24, 23652-91-7; 25, 23754-49-6; 26, 23112-27-8; 27, 23112-29-0; 28, 23652-94-0; 29, 23652-95-1; 30, 23652-96-2; 31, 23652-52-0; 32, 7542-81-6; 33, 626-34-6; 34, 23652-55-3; 35, 21759-74-0; 36, 23652-56-4; 37, 77-04-3; 38, 1130-18-3; 39, 13382-19-9; 40, 1127-58-8; 41, 14099-74-2; 42, 5114-60-3; 43, 4155-70-8; 44, 5114-65-8; 45, 873-95-0; 46, 701-58-6; 47, 1500-76-1; 48, 23645-82-1; 49, 23674-56-8; 50, 23645-83-2; **51**, 23674-57-9; **52**, 23652-57-5; **53**, 23652-58-6; **54**, 23652-59-7; **55**, 23652-60-0; **56**, 23674-58-0; **57**, 7542-80-5; 58, 7542-90-7; 59, 7542-91-8; 60, 5229-31-2; 61, 21731-13-5; 62, 21731-16-8; 63, 23652-67-7; 64, 7032-12-4; 65, 7032-09-9; 66, 14996-96-4; 67, 14996-94-2; 68, 3284-34-2; 69, 3335-03-3; 70, 23645-88-7; 71, 3335-05-5; 72, 3284-32-0; 73, 7032-11-3; 74, 14996-98-6; 75, 7032-13-5; 76, 1971-15-9; 77, 16236-60-5; 78, 1128-75-2; 79, 1130-77-4; 80, 1216-47-3; 81, 1149-82-2.

⁽⁴⁸⁾ Bowden, Braude, and Jones¹⁰ have proposed a substituent increment of +81 m μ for a β -dialkylamino group (-NR₂). Only one model compound of unknown configuration, ethyl 3-diethylaminocrotonate (62), was involved. Our assignment of a *trans* structure to 62 is based upon analogy to later work¹⁸ and its relatively large molar absorptivity.